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ABSTRACT 

Surgical resection of portions of the temporal lobe is the 

standard of care for patients with refractory mesial temporal 

lobe epilepsy. While this reduces seizures, it often results in 

an inability to form new memories, which leads to difficulties 

in social situations, learning, and suboptimal quality of life. 

Learning about the success or failure to form new memory in 

such patients is critical if we are to generate 

neuromodulation-based therapies. To this end, we tackle the 

many challenges in analyzing memory formation when their 

brains are recorded using stereoencephalography (sEEG) in 
a Free Recall task. Our contributions are threefold. First, we 

compute a rich measure of brain connectivity by computing 

the phase locking value statistic (synchrony) between pairs of 

regions, over hundreds of word memorization trials. Second, 

we leverage the rich information (over 400 values per pair of 

probed brain regions) to form consistent length feature 

vectors for classifier training. Third, we train and evaluate 

seven different types of classifier models and identify which 

ones achieve the highest accuracy and which brain features 

are most important for high accuracy. We assess our 

approach on data from 37 patients pre-resection surgery. We 
achieve up to 73% accuracy distinguishing successful from 

unsuccessful memory formation in the human brain from just 

1.6 sec epochs of sEEG data.  

Index Terms— Epilepsy, stereo EEG, phase 

synchrony, classification 

1. INTRODUCTION 

For drug-resistant mesial temporal lobe epilepsy 

(MTLE) patients, surgical resection of a portion of the 

temporal lobe containing the seizure foci is often quite 

effective at eliminating or greatly reducing the frequency of 

subsequent seizures. Unfortunately, a common side effect is 

significant loss in the ability to form new memories causing 
difficulty in social situations, learning, and suboptimal 

overall quality of life. There is growing interest in medical 

research to elucidate neuronal correlates that discriminate 

successful new memory formation, or encoding of new 

information, from the failure to form new memories or 

unsuccessful encoding. The study of human memory in 

epileptic patients presents unique opportunities. 

Neurosurgeons utilize invasive stereoencephalography 

(sEEG) to fine-tune localization of the seizure foci. This 

technique entails the insertion of contact-laden probes into 

the patient’s brain to directly record neuronal electrical 

activity. The probes are left in the subject’s brain for up to 

two weeks, to give sufficient time for a seizure to occur. This 

also provides ample time to have the subjects perform 

memory tasks (e.g. Free-Recall task) to gain new insights into 

how new memory formation can succeed or fail. Meanwhile 

the sEEG probes provide unparalleled ability to resolve 

neuronal activation in both space and time.  

     In this study, we focus on memory encoding by building 
classifiers with machine learning to predict whether new 

information (a word) presented to the subject was 

successfully encoded or not. To do this we utilize features 

derived from sEEG signals during brief epochs just after the 

words are presented. Training such classifiers requires 

constructing features of a fixed length and this is challenging 

when processing sEEG data for two reasons. First the voltage 

over time recordings from the probed regions must be 

converted into a form that characterizes information 

processing and communication between regions to better 

capture memory formation. Second, the data must be put into 
a consistent length since most commonly used and optimized 

classifiers require training feature vectors of fixed length. 

However, it is seldom the case in current clinical practices, 

that the exact same set of neuroanatomical regions will be 

probed in two different patients.  Electrodes are inserted so as 

to probe the suspected seizure foci whilst minimizing damage 

to eloquent areas. Our first contribution is to address these 

challenges. We transform the raw voltage over time 

recording, v(t), for each pair of regions into a measure of 

inter-regional brain communication. We utilize statistical 

measure of synchrony known as the phase locking value 

(PLV) statistic. To address the variable nature of the probed 
locations we adopt a strategy of characterizing the most 

common inter-regional communication channels.  Our 

second contribution is to systematically test and evaluate 

seven widely used classifiers for suitability to predict 

memory encoding success or failure in a rigorous framework 

using nested cross validation, which has been shown to 

minimize bias in accuracy estimates, as explained in [1]. 

     Several related recent studies use machine learning to 

predict successful versus unsuccessful memory states. Balci 
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et al. trained linear support vector machine models for 

memory state prediction from fMRI data [2]. However, fMRI 

measures the BOLD signal, an indirect measure of neuronal 

activation. This signal has a slow ~2 second temporal 

resolution, while brain activation occurs on the order of 

several msec. Achieving sufficiently high temporal resolution 
requires using other modalities that directly measure neuronal 

activation (e.g. EEG or MEG).  Hohne et al. evaluated the 

prediction accuracy of the linear SVM using EEG phase 

information [3]. They explored the data from a cortical 

surface grid EEG, which although simpler to analyze, does 

not directly measure neuronal activation well from deep 

memory targeted regions such as the hippocampus. This is 

due to interference from intervening tissue between the deep 

region and the cortical surface. Since deep regions such as the 

hippocampus are a focus of our study due to their 

involvement in memory, we develop a method to process 
sEEG data that does not suffer from such signal interference 

limitations.  

2. MATERIALS AND METHODS  

2.1 Dataset 

Our dataset consists of stereo-EEG recordings from 

37 patients with refractory mesial temporal lobe epilepsy who 

have been selected for temporal lobe resection by 

neurosurgeons at the UT Southwestern Medical Center, 

Dallas, TX USA. The recordings were sampled at 1000 Hz 

continuously (24h/day) for between 7-14 days.  Each patient 

has between 10 and 13 probes, with 10 contacts along the 

length of each probe, implanted in their lateral and mesial 
structures. Across these 37 subjects a total of 28 structures 

were probed in at least one subject. The list of probed regions 

is: {anterior hippocampus left/right, anterior temporal 

left/right, basal temporal lateral left/right, basal temporo-

medial left/right, lateral mid temporal left/right, lateral orbit 

frontal left/right, lateral posterior temporal left/right, lateral 

temporopareital left/right, mid orbitofrontal left/right, 

posterior hippocampus left/right, posterior cingulate 

left/right, precuneus left/right, superior temporal post 

left/right, superior temporal med left/right}. 

2.2 Test Episodic Memory with Free Recall Task 
     During extraoperative recording, each patient performed 

the Free Recall task (Fig. 1, top). In this task, the subjects are 

asked to remember a list of words, and then perform a 

distractor arithmetic task, then given 45 seconds to recall as 

many words as they can from the previously presented word 

list [4]. Words that were presented and subsequently recalled, 

were labeled by the clinician as successfully encoded (which 

we represent as a 1 in our training set target vector, y), while 

words that were presented but not recalled were labeled as 

unsuccessfully encoded and labeled as a 0 in y [5].   In our 

task, 16 word encoding trials were performed with 15 words 

per trial. We use the data from all trials and words. We extract 
and process the subset of the sEEG data in the 1600ms epoch 

following every word presentation which ends prior to the  

 

Figure 1: Free-Recall Task 

next word. An example of the time-locked epochs that we 

process is illustrated for the word “CAR” in Fig. 1, bottom.   

2.3 Measure Inter-regional, Functional Brain 

Connectivity with Phase-locking Value Statistic 

     Since sEEG directly measures neuronal activity within the 
brain, it permits us to derive estimates of functional 

connectivity.  In this research, we focus on measuring the 

connectivity between pairs of probed brain regions. Several 

bi-variate estimators have been proposed, including classical 

linear methods to measure the directionality of interactions 

(correlation) or coherence (phase). Non-linear methods can 

model both linear relationships as well as non-linear ones. 

Since the nature of the memory success or failure in epileptics 

is not well understood, we choose a flexible non-linear phase 

synchronization method. This method assumes that two brain 

regions are connected functionally when they are phase 
locked. We compute the phase locking value statistic which 

measures whether the voltage recordings in probed regions 1 

and 2, v1(t) and v2(t), are statistically significantly phase 

locked over multiple trials over a time window within the 

encoding epoch. We compute the phase locking value 

statistic for specific frequency components within the 

recordings and for multiple epoch time windows. To 

calculate these PLV statistics, each vi(t) recording at each 

region i, is filtered using Morlet wavelets to 53 

logarithmically-spaced frequencies ranging from 2 Hz to 181 

Hz. The appearance of locally generated oscillations at such 

frequencies in the human brain is widely appreciated [6]. We 
then apply a Hilbert transform to compute the instantaneous 

phase, 𝜙(𝑡), of the signal, where 𝜙(𝑡) ∈ [−𝜋, … , +𝜋]. The 

difference between the phase time course of two electrodes, 

𝜃(𝑡) = 𝜙1(𝑡) − 𝜙2(𝑡) quantifies the locking between the 

phases. If a stimulus or activity (e.g. memory) causes the two 

regions to rise and fall together or with a fixed time lag, 

then 𝜃(𝑡) will be consistent across the trials. If there is no 

relationship, 𝜃(𝑡) will be random. To quantify the 

randomness in 𝜃(𝑡) and compute PLV we use:  

𝑃𝐿𝑉𝑡 =
1

𝑁
 |∑ exp(𝑗𝜃𝑛(𝑡))

𝑁

𝑛=1

| 
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Figure 2: Phase locking value statistic over frequency 

and time forms our region pair (edge) feature. 

 

where N is the number of trials and 𝜃𝑛(𝑡) is the phase 

difference at trial n. The PLV values are then Z-score 

normalized. Since there can be multiple electrodes (probe 

contacts) within a given region, the z-statistic of the 

synchrony values are averaged over all pairs of electrodes 

from a region pair. Electrodes are localized to a 

neuroanatomical region by co-registering pre-surgical CT 

and MRI. For further detail see [4,7]. 

     This calculation is computed separately for each of 53 

frequencies and 8 linearly-spaced time windows from 0ms to 

1600ms post word presentation. This yields an edge feature 
matrix with 53 frequency bins and 8 time-bins of phase 

locking values for every pair of probed regions (Fig. 2), that 

we linearize columnwise to form a 424-length feature vector.  

2.3 Identify Common Pairs of Probed Regions among 

Subjects 

We formed a graph consisting of one vertex for each region 

and one edge between each region pair. We hypothesized that 

because the edge features are information rich, the individual 

edges would be sufficient to detect the success or failure of 

new memory formation, particularly when one or both 

regions perform a memory related task. We also found that 
several edges exist in common across our subjects (Table 1, 

bottom). The location of these edges is illustrated in Fig. 3. 

Utilizing common edges allows to extract features of fixed 

length across subjects, a requirement of several powerful 

classifiers. 

     We also hypothesized using two edges might also aid in 

characterizing memory formation and enable the construction 

of a classifier capable of discriminating successful from 

unsuccessful encoding. In our dataset the edge pair between 

anterior hippocampus left and lateral mid temporal left (AHL 

and LMTL) and between anterior temporal left and lateral mid 
temporal left (ATL and LMTL), is the most common 

(occurring in 16 subjects), while six other edge pairs (listed 

in the columns heading of table 3) occur in 15 subjects. We 

train and evaluate seven (7) types of two-category classifiers 

to discriminate successful and unsuccessful encoding. We do 

this and select optimal hyperparameters using a nested cross 

validation approach with 10 folds for each of the two levels 

of cross validation. 

 

Table 1: The most common edges, delineated by probed 

region pairs, in our dataset. (top) Region names and 

their abbreviations. (bottom) Common edges and the 

number of subjects with each edge. 

Region Name Abbreviation 

Anterior Hippocampus left AHL 

Anterior Hippocampus right AHR 
Anterior Temporal left ATL 

Anterior Temporal right ATR 
Lateral Mid Temporal left LMTL 

Lateral Mid Temporal right LMTR 
Posterior Cingulate right PCR 

 

Common edge # Subjects 

AHL and LMTL 21 
ATL and LMTL 17 
AHL and AHR 16 

LMTL and LTPL 16 
LTPR and PCR 16 

  

 
Figure: 3. Locations of the 5 most common edges. 

Visualizations generated using BrainNet Viewer [8]. 

2.4. Systematically Train and Compare Seven (7) 

Different Classifiers Using PLV Features  

Nesting provides minimal bias in accuracy estimates that are 

more likely to hold up when we translate our methods to the 

clinic. The list of classifiers we construct includes: {logistic 

regression, linear support vector machine, extremely 

randomized forest, randomized forest, Adaboost, Gradient 
boosting (Gradboost), and voting (a combination of the 

remaining 6 classifiers)} with implementations from [1]. 

 

3. RESULTS 

     In this section we describe our two experiments. In the 

first, we evaluate the classifiers on 424 PLV features from 

common single edges; in the second, we evaluate their 

performance when trained on the 848 PLV edge pair features.  

3.3. Results Using Common Single Edges 

When trained on common single edges, we observe that 

Adaboost, gradient boosting and voting classifiers achieve 

accuracy well above chance (50%) when using the PLV 
features from the edge connecting lateral mid temporal left 

(LMTL) and lateral temporoparietal left (LTPL). We also 

observe elevated standard deviations for some models, which  
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Table 2. Classifier accuracy using features from common 

single edges. Gradient boosting and voting classifiers with 

73% accuracy values on edge number 4.  

  Most frequent edge 

Classifier A
H

L
-

L
M

T
L
 

A
T

L
-

L
M

T
L
 

A
H

L
-

A
H

R
 

L
M

T
L
-

L
T

P
L
 

L
T

P
R
-

P
C

R
 

Log. Reg (%) 
53 
±26 

43 
±11 

48 
±21 

58 
±0 

50 
±20 

SVM (%) 
52 
±25 

45 
±19 

53 
±8 

45 
±15 

55 
±10 

ERF (%) 
52 
±12 

40 
±17 

50 
±19 

55 
±20 

43 
±24 

RF (%) 
44 
±24 

50 
±11 

48 
±8 

55 
±24 

45 
±19 

Adaboost (%) 
53 
±16 

40 
±17 

30 
±22 

63 
±8 

60 
±23 

GradBoost (%) 
48 
±15 

45 
±20 

55 
±30 

73 
±20 

40 
±20 

Voting (%) 
38 
±13 

43 
±19 

53 
±21 

73 
±21 

38 
±19 

is expected due to limited cohort size. The full results for all 

common single edges are shown in Table 2. 

3.4. Results Using Common Edge Pairs 

We trained the same set of classifiers on the features from the 
common edge pairs and these results are summarized in Table 

3. We observe that most of the ensemble classifiers, and the 

logistic regression performed better than chance using the 

edge pairs (AHL-LMTL; AHR-LMTL) and (AHL-AHR; AHR-

LMTL). The random forest performed better than chance on 

edges classification accuracies on edge pairs (AHL-LMTL; 

AHL-AHR), (AHL-AHR; AHR-LMTL) and (AHL-LTPL; 

LMTL-LTPL). 

4. DISCUSSION 

We would anticipate that features from regions involved in 

memory formation would be most important to identify brain 
states of successful encoding. Our results support that 

expectation; all classifiers with high accuracy (>60%) include 

the LMTL as at least one communicating region and this 

region is known to be involved in memory formation. In our 

dataset, 21 of 37 subjects (57%) have at least one of the edges 

or edge pairs with classifier accuracy better than chance (i.e. 

>63%). 

     Fig 4 shows the PLV feature importances for the ERF 

classifier using the edge pair, AHL-AHR; AHR-LMTL. We 

observe the most important, discriminative features lie in the 

gamma, beta bands (known to be important for memory) and 
theta bands, and tend to be in the middle of the memory 
encoding epoch. 

5. CONCLUSION 

We presented a method for predicting whether information is 

successfully encoded in the human brain using sEEG data. To 

accomplish this, we overcame the challenges of heterogenous 

data where the set of probed regions were highly variable 

from one patient to the next. By constructing rich PLV feature 

matrices to characterize every edge, we were able to utilize 
common edges as input features to our classifiers that yielded 

high prediction accuracy, up to 73% in distinguishing 

memory encoding states, in 1.6-second epochs of sEEG data. 

Table 3: Classifier accuracy using features from common 

edge pairs.  

  Most frequent edge pair  

Classifier A
H

L-
LM

T L
 

A
T L

-L
M

T L
 

A
H
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LM

T L
   

LM
T L

-L
TP
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LM
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L-
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A
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M
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A
H
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R
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R
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A
H

L-
LM

T L
 

A
H

L-
LT

P
L 

A
H

L-
LT

P
L 

LM
T L

-L
TP

L 

Log. Reg (%) 
45±1

9 

40 
±17 

50 
±16 

60 
±16 

50 
±16 

43 
±11 

48 
±8 

SVM (%) 
40 
±20 

55 
±15 

53 
±15 

48 
±8 

45 
±8 

53 
±17 

43 
±16 

ERF (%) 
58 
±16 

48 
±18 

53 
±14 

65 
±13 

68 
±26 

53 
±15 

35 
±23 

RF (%) 
43 
±19 

55 
±15 

60 
±18 

58 
±22 

65 
±21 

53 
±22 

63 
±20 

Adaboost (%) 
43 
±22 

53 
±23 

48 
±17 

65 
±26 

65 
±20 

38 
±11 

50 
±19 

GradBoost 

(%) 

45 
±16 

43 
±22 

40 
±8 

63 
±20 

55 
±22 

38 
±12 

40 
±32 

Voting (%) 
43 
±13 

50 
±21 

45 
±12 

63 
±17 

68 
±20 

45 
±13 

35 
±22 

Figure 4: Feature importances for the extremely 

randomized forest (ERF) using the edges (left) AHL-AHR 

and (right) AHR-LMTL. 

We extended our analysis to common edge pairs. We trained 

and evaluated seven classifiers and reported accuracy on all. 

In the future, we aim to further improve accuracy with 

additional rich brain connectivity features and increase the 

number of patients studied. Our work has brain states with 

high propensity for successful memory formation for which 

our ultimate goal is to use for targeted therapies, such as deep 

brain stimulation, to help restore full memory capabilities for 

the MTLE patients.  
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